320 research outputs found

    Spectral Polarization Distribution Models (PDMs) for NASA CLARREO Pathfinders Inter-Calibration Applications

    Get PDF
    Solar radiation scattered by Earth surfaces of various scene types such as oceans, deserts, tree leaves etc and atmospheric molecules and particles is polarized and the amount of polarization depends on the surface composition and particle physical properties. This can be a source of measurement errors in satellite data if a non-polarimetric radiometric sensor is sensitive to the polarization state of light. To obtain highly accurate spectral solar radiation data from the Earth-atmosphere system for the space-borne inter-calibration studies as proposed in NASA's Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission and the CLARREO Pathfinder (CPF) mission, the spectral polarization state of the reflected solar light at the top of atmosphere (TOA) must be known with sufficient accuracy. The degree of polarization (DOP) and the angle of linear polarization (AOLP) of the light at the TOA as functions of incident and viewing geometry and scene type construct the Polarization Distribution Models (PDMs) for correction of polarization-induced error of satellite data. In this work, algorithms for modeling the spectral polarization state of reflected sunlight from various types of Earth, including oceans, deserts, vegetated land surfaces and these scene types with all kinds of clouds, are developed. By comparing the model results with the PARASOL satellite data, our numerical results demonstrate that the model can provide a reliable approach for making the spectral PDMs for wavelengths between 320 and 2300 nm for satellite inter-calibration applications as proposed in the CLARREO and the CLARREO CPF missions

    LiveView3D: Real Time Data Visualization for the Aerospace Testing Environment

    Get PDF
    This paper addresses LiveView3D, a software package and associated data visualization system for use in the aerospace testing environment. The LiveView3D system allows researchers to graphically view data from numerous wind tunnel instruments in real time in an interactive virtual environment. The graphical nature of the LiveView3D display provides researchers with an intuitive view of the measurement data, making it easier to interpret the aerodynamic phenomenon under investigation. LiveView3D has been developed at the NASA Langley Research Center and has been applied in the Langley Unitary Plan Wind Tunnel (UPWT). This paper discusses the capabilities of the LiveView3D system, provides example results from its application in the UPWT, and outlines features planned for future implementation

    Advanced Visualization of Experimental Data in Real Time Using LiveView3D

    Get PDF
    LiveView3D is a software application that imports and displays a variety of wind tunnel derived data in an interactive virtual environment in real time. LiveView3D combines the use of streaming video fed into a three-dimensional virtual representation of the test configuration with networked communications to the test facility Data Acquisition System (DAS). This unified approach to real time data visualization provides a unique opportunity to comprehend very large sets of diverse forms of data in a real time situation, as well as in post-test analysis. This paper describes how LiveView3D has been implemented to visualize diverse forms of aerodynamic data gathered during wind tunnel experiments, most notably at the NASA Langley Research Center Unitary Plan Wind Tunnel (UPWT). Planned future developments of the LiveView3D system are also addressed

    Real-Time Aerodynamic Flow and Data Visualization in an Interactive Virtual Environment

    Get PDF
    Significant advances have been made to non-intrusive flow field diagnostics in the past decade. Camera based techniques are now capable of determining physical qualities such as surface deformation, surface pressure and temperature, flow velocities, and molecular species concentration. In each case, extracting the pertinent information from the large volume of acquired data requires powerful and efficient data visualization tools. The additional requirement for real time visualization is fueled by an increased emphasis on minimizing test time in expensive facilities. This paper will address a capability titled LiveView3D, which is the first step in the development phase of an in depth, real time data visualization and analysis tool for use in aerospace testing facilities

    Design, fabrication, and testing of a SMA hybrid composite jet engine chevron

    Get PDF
    Control of jet noise continues to be an important research topic. Exhaust nozzle chevrons have been shown to reduce jet noise, but parametric effects are not well understood. Additionally, thrust loss due to chevrons at cruise suggests significant benefit from deployable chevrons. The focus of this study is development of an active chevron concept for the primary purpose of parametric studies for jet noise reduction in the laboratory and technology development to leverage for full scale systems. The active chevron concept employed in this work consists of a laminated composite structure with embedded shape memory alloy (SMA) actuators, termed a SMA hybrid composite (SMAHC). The actuators are embedded on one side of the middle surface such that thermal excitation generates a moment and deflects the structure. A brief description of the chevron design is given followed by details of the fabrication approach. Results from bench top tests are presented and correlated with numerical predictions from a model for such structures that was recently implemented in MSC.Nastran and ABAQUS. Excellent performance and agreement with predictions is demonstrated. Results from tests in a representative flow environment are also presented. Excellent performance is again achieved for both open- and closed-loop tests, the latter demonstrating control to a specified immersion into the flow. The actuation authority and immersion performance is shown to be relatively insensitive to nozzle pressure ratio (NPR). Very repeatable immersion control with modest power requirements is demonstrated

    Metacognition in functional cognitive disorder

    Get PDF
    Functional cognitive disorder is common but underlying mechanisms remain poorly understood. Metacognition, an individual’s ability to reflect on and monitor cognitive processes, is likely to be relevant. Local metacognition refers to an ability to estimate confidence in cognitive performance on a moment-to-moment basis, whereas global metacognition refers to long-run self-evaluations of overall performance. Using a novel protocol comprising task-based measures and hierarchical Bayesian modelling, we compared local and global metacognitive performance in individuals with functional cognitive disorder. Eighteen participants with functional cognitive disorder (mean age = 49.2 years, 10 males) were recruited to this cross-sectional study. Participants completed computerized tasks that enabled local metacognitive efficiency for perception and memory to be measured using the hierarchical meta-d’ model within a signal detection theory framework. Participants also completed the Multifactorial Memory Questionnaire measuring global metacognition, and questionnaires measuring anxiety and depression. Estimates of local metacognitive efficiency were compared with those estimated from two control groups who had undergone comparable metacognitive tasks. Global metacognition scores were compared with the existing normative data. A hierarchical regression model was used to evaluate associations between global metacognition, depression and anxiety and local metacognitive efficiency, whilst simple linear regressions were used to evaluate whether affective symptomatology and local metacognitive confidence were associated with global metacognition. Participants with functional cognitive disorder had intact local metacognition for perception and memory when compared with controls, with the 95% highest density intervals for metacognitive efficiency overlapping with the two control groups in both cognitive domains. Functional cognitive disorder participants had significantly lower global metacognition scores compared with normative data; Multifactorial Memory Questionnaire-Ability subscale (t = 6.54, P < 0.0001) and Multifactorial Memory Questionnaire-Satisfaction subscale (t = 5.04, P < 0.0001). Mood scores, global metacognitive measures and metacognitive bias were not significantly associated with local metacognitive efficiency. Local metacognitive bias [β = −0.20 (SE = 0.09), q = 0.01] and higher depression scores as measured by the Patient Health Questionnaire-9 [β = −1.40 (SE = 2.56), q = 0.01] were associated with the lower global metacognition scores. We show that local metacognition is intact, whilst global metacognition is impaired, in functional cognitive disorder, suggesting a decoupling between the two metacognitive processes. In a Bayesian model, an aberrant prior (impaired global metacognition), may override bottom-up sensory input (intact local metacognition), giving rise to the subjective experience of abnormal cognitive processing. Future work should further investigate the interplay between local and global metacognition in functional cognitive disorder

    A Transiting Planet of a Sun-like Star

    Get PDF
    A planet transits an 11th magnitude, G1V star in the constellation Corona Borealis. We designate the planet XO-1b, and the star, XO-1, also known as GSC 02041-01657. XO-1 lacks a trigonometric distance; we estimate it to be 200+-20 pc. Of the ten stars currently known to host extrasolar transiting planets, the star XO-1 is the most similar to the Sun in its physical characteristics: its radius is 1.0+-0.08 R_Sun, its mass is 1.0+-0.03 M_Sun, V sini < 3 km/s, and its metallicity [Fe/H] is 0.015+-0.04. The orbital period of the planet XO-1b is 3.941534+-0.000027 days, one of the longer ones known. The planetary mass is 0.90+-0.07 M_Jupiter, which is marginally larger than that of other transiting planets with periods between 3 and 4 days. Both the planetary radius and the inclination are functions of the spectroscopically determined stellar radius. If the stellar radius is 1.0+-0.08 R_Sun, then the planetary radius is 1.30+-0.11 R_Jupiter and the inclination of the orbit is 87.7+-1.2 degrees. We have demonstrated a productive international collaboration between professional and amateur astronomers that was important to distinguishing this planet from many other similar candidates.Comment: 31 pages, 9 figures, accepted for part 1 of Ap

    “I did not know about all these”: Perceptions regarding safer conception methods by women living with HIV in Gaborone, Botswana

    Get PDF
    Various safer conception methods to limit HIV transmission risks can be offered in resource constrained settings. However, implementation of safer conception services remains limited in many countries, including Botswana. Understanding perceptions about safer conception methods and the benefits and challenges to use can help with the development of policies, interventions, and service delivery models. Forty-five women living with HIV in the greater Gaborone, Botswana area participated in focus group discussions. Themes were analyzed using interpretive phenomenology. Despite low knowledge of specific safer conception methods that can be used to prevent transmission of HIV when trying to achieve pregnancy, there was noted interest in pre-exposure prophylaxis and vaginal insemination. Challenges to greater uptake were noted including a lack of knowledge about a range of SC methods, limited partner support and communication, provider stigma, health systems barriers, current policies, and the cultural acceptability of methods. Interventions will need to address these challenges and be responsive to the needs and reflect the realities of WLHIV who desire pregnancy in order for safer conception uptake to become a common practice
    corecore